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Purpose of this talk

■ Describe an algorithm to enumerate all 
s-t cuts in a directed network whose 
capacity is within 1+ε of being optimal 
for ε ≥ 0.  (“near-min cuts”) 

■ Prove that the run time is polynomial 
per cut enumerated when ε = 0.

■ Prove that it is polynomial for certain 
graph topologies .
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A Network Interdiction Problem

■ Given network G=(N,A) and resource rk
required to “destroy” k=(i,j), find the 
minimum total resource required to cut 
all comm between nodes s and t . 

■ Simple solution via the max-flow min-
cut theorem:

Set resources as arc capacities, find 
max flow and min capacity cut.
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Max-flow, min-cut

(With multiple solutions)
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One min cut easy to find, but…

■ There may be secondary 
considerations, e.g., collateral 
damage, logical constraints

■ So, find all min cuts and evaluate 
against other relevant criteria

■ How to enumerate?
– Brute force:  Enumerate all cuts
– Some theoretical work in literature
– Practical: Norm Curet, Applied Math, NSA
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The next refinement

■ Allow near-optimal solutions, i.e., 
accept near-min cuts.

■ Can still enumerate all cuts!
■ Some graph theoretical work.  

Ramanathan and Colbourn (1987), 
Vazirani and Yannakakis (1997) 
enumerate cutsets

■ Two Masters theses at NPS.
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Our partitioning scheme
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Forcing arcs in and out of cuts

■ To ensure that a given arc k is 
excluded from all cuts below a given 
tree node, set uk = ∞

■ To ensure inclusion of k = (i,j), add (s,i) 
and (j,t) with capacities of ∞ (treat i as 
an extra source and j as an extra sink)

■ Exclusion always works; inclusion can 
introduce new “pseudo-minimal” cuts

■ Just keep track of AIN and AOUT
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Force inclusion of arc k4 = (u,v)
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Actually, just treat u as a new 
source and v as a new sink.



10

Creating pseudo-minimal cuts
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{k1, k2, k8} is a pseudo-minimal cut



11

An Algorithm

MAIN
Input: G =(N,A),  u, ε, s, t   /* Global */
Output: All cuts with cap. ≤ (1 + ε) zmin

{  
( zmin, AC ) ← Maxflow (G, {s}, {t}, u);
/* zmin is also global */
AIN ← Ø; AOUT ← Ø;
Enumerate(AIN, AOUT);

}
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Algorithm: recursive routine

Enumerate(AIN, AOUT)
{ u´ ← u; uk ← ∞ ∀k∈AOUT;

S ← {s}+{i|(i,j)∈AIN; T ← {t}+{j|(i,j)∈ AIN;
(z′, AC ) ← Maxflow (G, S, T, u´);
If (z′> (1 + ε)×zmin ) return;
If( AC is minimal) Print (z′, AC );
For (each k ∈ AC− AIN){ 

AOUT ← AOUT+{k};
Enumerate(AIN, AOUT);
AOUT ← AOUT −{k}; AIN ← AIN +{k};

}
return;

}
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An Example
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Details on a chalkboard!
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Algorithm: Notes

■ Actual implementation more efficient
■ Max-flows not solved from scratch; 

use a flow-augmenting path algorithm
■ Pre-emptive backtracking from within 

Maxflow allowed
■ Work per iteration O(|A|) for finding 

min cuts; “usually” O(|A|) anyway?
■ Testing for non-minimal cuts O(|A|)
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Algorithm: Thm 1 (it works!)

■ Theorem 1: The algorithm 
enumerates all near-min cuts.

Proof: Simple partitioning and 
enumeration argument.  QED

___________________________________
Let C denote the set of near-min cuts and let MF 

denote time for max flow
Note: The enumeration tree has only 

“productive tree nodes” (near-min cuts) or 
“unproductive tree nodes”
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Algorithm: Thm 2 (efficiency)

■ Theorem 2: Run time is 
O(|A||N||C|+MF) for finding min cuts
AC (with pre-emptive backtracking).
Proof: Initial cut found in O(MF) time.  
A new min cut is generated & proven 
min in two O(|A|) flow augmentations, 
or pre-emptive backtracking occurs.   
There are at most |N| dead tree nodes 
for each productive node and
|Productive nodes|=|C|.  QED
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Algorithm: Thm 3 (efficiency)

■ Theorem 3: (ε > 0)  Run time is 
O(|A||N||C|+MF) for finding near-min 
cuts AC when zminε < umin.

Proof: Same as previous proof, 
essentially, because any cut with 
capacity zmin(1+ε) must be minimal:
The smallest capacity a non-min’l cut 
can have is zmin+umin > zmin(1+ε), so any 
non-min’l cut causes a backtrack. QED
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Algorithm: Thm 4 (efficiency)

■ Theorem 3: Run time is O(|N||C| MF) 
for finding near-min cuts if all arcs of 
the form (s,v) and (v,t) exist.
Proof: Quasi-inclusion does not 
change the connectivity of G under 
these conditions.  Every cut found is 
minimal.  Each productive node in the 
enumeration tree has at most |N|-1 
nonproductive children. QED

■ Corollary 1: Run time is O(|N||C| MF) 
for finding near-min cuts in complete 
graphs.
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Algorithm: General Efficiency

■ My guess: Difficult
■ Problematic examples exist.  Non-

minimal cuts can be produced when 
forcing arcs in

■ Finding a minimal cut that includes 
certain arcs and excludes others is an 
NP-complete problem

■ There is room for improved efficiency 
by identifying “non-forceinable arcs”!
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Enhancements and results

■ Don’t solve max flows from scratch
■ Results: 733 MHz Pentium III in Java 
■ Only results for grid networks here, 

with ck = 1
■ All 249 min cuts in a 25 by 250 grid 

(|N|=6,252, |A|=24,500) in 18 seconds
■ All 431,728 near-min cuts (ε = 0.15) in a 

25 by 25 grid in 973 seconds (253 non-
minimal cuts encountered)
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Further research

■ Find more classes of graphs that admit 
efficient solutions

■ Add tests for “edge domination” to 
eliminate certain edges from possible 
quasi-inclusion

■ Using the basic algorithm in a 
“network diversion problem”:  Find a 
min-weight, minimal cut that contains 
a given edge


